116 research outputs found

    Automated Verification of Practical Garbage Collectors

    Full text link
    Garbage collectors are notoriously hard to verify, due to their low-level interaction with the underlying system and the general difficulty in reasoning about reachability in graphs. Several papers have presented verified collectors, but either the proofs were hand-written or the collectors were too simplistic to use on practical applications. In this work, we present two mechanically verified garbage collectors, both practical enough to use for real-world C# benchmarks. The collectors and their associated allocators consist of x86 assembly language instructions and macro instructions, annotated with preconditions, postconditions, invariants, and assertions. We used the Boogie verification generator and the Z3 automated theorem prover to verify this assembly language code mechanically. We provide measurements comparing the performance of the verified collector with that of the standard Bartok collectors on off-the-shelf C# benchmarks, demonstrating their competitiveness

    The ERA Theorem for Safe Memory Reclamation

    Full text link
    Safe memory reclamation (SMR) schemes for concurrent data structures offer trade-offs between three desirable properties: ease of integration, robustness, and applicability. In this paper we rigorously define SMR and these three properties, and we present the ERA theorem, asserting that any SMR scheme can only provide at most two of the three properties

    VBR: Version Based Reclamation

    Get PDF
    Safe lock-free memory reclamation is a difficult problem. Existing solutions follow three basic methods (or their combinations): epoch based reclamation, hazard pointers, and optimistic reclamation. Epoch-based methods are fast, but do not guarantee lock-freedom. Hazard pointer solutions are lock-free but typically do not provide high performance. Optimistic methods are lock-free and fast, but previous optimistic methods did not go all the way. While reads were executed optimistically, writes were protected by hazard pointers. In this work we present a new reclamation scheme called version based reclamation (VBR), which provides a full optimistic solution to lock-free memory reclamation, obtaining lock-freedom and high efficiency. Speculative execution is known as a fundamental tool for improving performance in various areas of computer science, and indeed evaluation with a lock-free linked-list, hash-table and skip-list shows that VBR outperforms state-of-the-art existing solutions

    EEMARQ: Efficient Lock-Free Range Queries with Memory Reclamation

    Get PDF
    Multi-Version Concurrency Control (MVCC) is a common mechanism for achieving linearizable range queries in database systems and concurrent data-structures. The core idea is to keep previous versions of nodes to serve range queries, while still providing atomic reads and updates. Existing concurrent data-structure implementations, that support linearizable range queries, are either slow, use locks, or rely on blocking reclamation schemes. We present EEMARQ, the first scheme that uses MVCC with lock-free memory reclamation to obtain a fully lock-free data-structure supporting linearizable inserts, deletes, contains, and range queries. Evaluation shows that EEMARQ outperforms existing solutions across most workloads, with lower space overhead and while providing full lock freedom

    The Teleportation Design Pattern for Hardware Transactional Memory

    Get PDF
    We identify a design pattern for concurrent data structures, called teleportation, that uses best- effort hardware transactional memory to speed up certain kinds of legacy concurrent data struc- tures. Teleportation unifies and explains several existing data structure designs, and it serves as the basis for novel approaches to reducing the memory traffic associated with fine-grained locking, and with hazard pointer management for memory reclamation

    Brief Announcement: A Persistent Lock-Free Queue for Non-Volatile Memory

    Get PDF
    Non-volatile memory is expected to coexist with (or even displace) volatile DRAM for main memory in upcoming architectures. As a result, there is increasing interest in the problem of designing and specifying durable data structures that can recover from system crashes. Data-structures may be designed to satisfy stricter or weaker durability guarantees to provide a balance between the strength of the provided guarantees and performance overhead. This paper proposes three novel implementations of a concurrent lock-free queue. These implementations illustrate the algorithmic challenges in building persistent lock-free data structures with different levels of durability guarantees. We believe that by presenting these challenges, along with the proposed algorithmic designs, and the possible levels of durability guarantees, we can shed light on avenues for building a wide variety of durable data structures. We implemented the various designs and evaluate their performance overhead compared to a simple queue design for standard (volatile) memory

    Drop the anchor: lightweight memory management for non-blocking data structures

    Get PDF
    ABSTRACT Efficient memory management of dynamic non-blocking data structures remains an important open question. Existing methods either sacrifice the ability to deallocate objects or reduce performance notably. In this paper, we present a novel technique, called Drop the Anchor, which significantly reduces the overhead associated with the memory management while reclaiming objects even in the presence of thread failures. We demonstrate this memory management scheme on the common linked list data structure. Using extensive evaluation, we show that Drop the Anchor significantly outperforms Hazard Pointers, the widely used technique for non-blocking memory management

    Linear Hashing

    Get PDF
    Consider the set H of all linear (or affine) transformations between two vector spaces over a finite field F. We study how good H is as a class of hash functions, namely we consider hashing a set S of sizen into a range having the same cardinality n by a randomly chosen function from H and look at the expected size of the largest hash bucket. H is a universal class of hash functions for any finite field, butwith respect to our measure different fields behave differently
    • …
    corecore